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J .  Phys. A: Math. Gen. 23 (1990) L427-L432. Printed in the U K  

LElTER TO THE EDITOR 

The Boltzmann function as an embedded property of Liouville’s 
equation 
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Department of Computing Science, Paisley College of Technology, Paisley, Renfrewshire 
PA1 2BE, U K  

Received 23 November 1989, in final form 22 January 1990 

Abstract. A classical system of indistinguishable interacting point-particles is considered 
whose probability density function satisfies Liouville’s equation. It is shown that, for a 
general Hamiltonian system, the Boltzmann function is the only single-particle measure 
on the phase space which can be interpreted as information content out of equilibrium. 
There is no connection between entropy Row and the arrow of time for the exact dynamics. 

The concept of entropy and its meaning has always been a fascinating subject. As 
pointed out by Andrew (1984), however, entropy does not appear in any of the equations 
of motion, and so its meaning, apparently, remains open to interpretation. Much of 
the argument stems from problems concerning the connection between time-reversible 
dynamics and irreversibility in the real world. Further difficulties are encountered 
when one attempts to establish links between irreversibility and the measure function 
- x In x. Fox (1982) has apparently shown that the exact time-reversible dynamics of 
a system of non-interacting particles can give rise to a monotonic increasing entropy 
function. This has been refuted by Mandel (1984) who claims that, essentially, the 
initial conditions are not consistent in the analysis. The underlying problem appears 
to be that many extra assumption are made often leading to different definitions of 
reversibility (Illner and Neunzert 1987) so that different writers are talking different 
languages with no possibility of agreement. 

Prigogine (1979a) has stated that the Liouville equation does not define a unique 
entropy type function primarily because 

is a constant of the motion for any function F of the evolving probability density D. 
In (1) dfl represents the elemental phase-space volume of a system described by 
Hamiltonian dynamics. Indeed, the PoincarC-Misra theorem (Prigogine 1979b) states 
that there cannot be a Lyapounov function defined on the phase space for the exact 
dynamics. This letter offers a different approach to the problem by answering the 
question: what is it about the Boltzmann H-function that makes it qualitatively different 
from any other phase-space measure for the exact dynamics? Later this question is 
answered by showing that functions of the form f x In x transform the time derivatives 
of the measure function into a structure-preserving form subject only to a symmetry 
condition on the Hamiltonian. Some concluding remarks are made at the end of this 
letter. 
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Since the results that follow rely heavily on the correlation equations of Balescu 
(1975a) his notation is adopted in this letter. The Hamiltonian is written in the following 
form: 

H = H O + H ~ + H '  

where @.:=a'( q j , p j ,  t )  is the external field potential, m is the particle mass, N the 
number of interacting particles and Q j k  represents the particle interaction potential 
satisfying the property 

q j , p j  represent the coordinates and the conjugate momenta for the system under 
discussion. Property (3) covers all classical forms of particle interaction with no 
assumption about time symmetry being necessary. Equation (3) represents a generalisa- 
tion of the more usual form considered in classical statistical mechanics, namely 

Corresponding to the breakup of H in (2) it is necessary to construct phase-space 

@ j k = @ k j = @ ( q j , P j ,  q k , P k ,  r). (3)  

@ j k  = @(I q j  - q k  1). 
operators from the Poisson bracket according to the rules 

L; = [a;, . . . I p  = v q , q  * vp, - V p , a q .  vq, 
L j k  = [ @ j k r .  f - 1 p  = V q , a j k  * vpI  - v p , @ j k  * V q , + V q r @ , k  * ' p ,  - V p , @ j k  * ' q , .  

(46) 

(4c) 
L: and L J k  are time dependent operators and L J k  = L k J  because of ( 3 ) .  Equation (4c) 
has the alternative useful form (when integrating over phase space) 

and similarly for L:. The . . . indicate any scalar function on which the various 
operators act. Since the particles are indistinguishable, the Liouville function is 
assumed invariant under particle relabelling. Hence (4a-c) can be specialised with 
j = l  and k = 2 .  

Explicit time equations are required for the univariate distribution f l  =fl(  q ,  , pI , t )  
and the pair correlation g , ,  = g I 2 (  q1 , pI , q 2 ,  p 2 ,  t )  in the form (Balescu 1975a) 

L J k .  . s = v p ,  ' (. . . V q , @ j k )  -vq, ( a  . . v p l @ j k )  f v p ,  * (. . v q , @ j k )  - v q ,  ' ( a  v p , @ j k )  

a,fl = (Ly+ L% + [ L 1 2 f 1 f 2  dx2+ [ L12g12 dx2 (5a) 

( 5 b )  a , g , , = ( G +  L r +  L;+ L : ) g 1 2 +  L12flh+ L 1 2 g 1 2 +  M l 2  

where 

M 1 2 =  [ [ ~ l ~ f l g 2 3 + ~ ~ ~ f ~ g , , + ( ~ , , + ~ 2 3 ) ( f 3 g 1 2 + g 1 2 3 ) 1  dx3. 

In ( 5 b )  g123 is the triple correlation function for the evolution. 
Finally, it is assumed that the Liouville function D together with a sufficient number 

of its derivatives vanish on the boundaries of the system in phase space (Balescu 
1975b). Clearly all derived functions from D will have similar properties. 

A measure function on phase space, H ( t ) ,  can be defined as 

~ ( t )  = J F(f,) dx, (6)  
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where dx, is the elemental volume in p-space and the form of F is to be determined 
from the phase-space flow. Although (6) is overly general, the time derivatives of H 
can be evaluated for the general case. It is a requirement that H is a sensible 
measurement in that it presumably measures something useful and so varies with time. 

Differentiating (6), using (50)  and the definitions (40-c) yields 

H (  t )  = - LI2gli dx, dx, 5 :: (7) 

where the other terms can easily be shown to vanish on the phase-space boundaries, 
providing the measure function F and its derivatives vanish there also. (7) is valid 
V t ,  but since H can have any value, (6) does not define a Lyapounov function. 

Putting Q ( f , )  =aF/afl  and noting by symmetry that 

H ( f )  = I Q ( f 2 L 2 g 1 2  dx, dX2 

it follows that 

Equation (8) is valid for any Hamiltonian system satisfying (2),  (3) and shows that 
fi( t )  depends only on the interaction operator 4,. In order to preserve this dynamical 
interaction picture in relation to evolution equations like (50, b) only the correlation 
patterns, defined by Balescu (1975a) as 

77(1/2) = f J 2  and 4 1 2 )  = g1* (9) 

are admissible in (8). This simply requires that 

Q(f1) + W 2 )  = Ql(f1fi) 

with the unique solution (Rasetti 1986) 

Q(fi 1 = k lnf i  3 91 = Q 
where k is an arbitrary constant. Hence the nontrivial measure F is given by 

w-1) = kfl ln f l .  

Equation (8) then becomes expressible in terms of correlation patterns only. Specifically 

Unless (7) can be mapped onto the T correlation patterns (9), the measure function 
is not structure preserving with respect to the property of pairwise interaction via LI2.  

The above proof of the Boltzmann function out of equilibrium for the exact dynamics 
appears, superficially, to be deceptive. Certainly its brevity is, perhaps, a cause for 
concern. If the simple mapping (9) is correct, other interesting properties should result 
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from it. This can be demonstrated by evaluating A from (10). Omitting k yields the 
following result from (10): 

In T (  1/2)L127r( 12) dx, dx2 
2 a t  

2 ( & - L P - L : - L : - L :  a t  In ~ ( 1 / 2 ) L , , ~ ( l 2 ) d x ~ d x ~  

=I 5 a:” In T (  1/2)LI2n( 12) dx, dx2 
2 

The operators ai2’ and LIZ do not, in general, commute but satisfy the relation 

a j 2 ) ~ 1 2  = ~ , ~ a j ~ ) +  L‘$ 

L:;) = [aj2)@12,. . .I,. 
where 

Balescu (1975a) has given the equations for 7 j (  1/2) and 7j( 12) in the form: 

dj2’r(12)= I [L,,T(1/23)+L,,T(2/13) 

+(L,3+L23)(~(3/12)+ ~ ( 1 2 3 ) ) ]  d~3+L12~(1/2)+L127r(12) .  

Substituing into (1 1) yields the following representation of fi( t )  as 

fi(t) =- 
2 In 7r(1/2)L12(L12~(1/2)) dx, dx2 

+- In ~(1/2)[L\22)7r(12)+ L l 2 ( L l 2 ~ ( 1 2 ) ) + L l Z M l 2 ]  dx, dx, 

‘I 
2 ‘I 

+ L23n.t 1/23)] dx, dX2 d ~ 3 .  

MI, has the representation (Balescu 1975a) 

The second time derivative of the Boltzmann function (12) is a function of the 
correlation pattems ( T )  up to order 3. The leading term of (12) can be rewritten as 
the sink term 
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V t  E R. The action of LI2  on the uncorrelated part of the distribution function con- 
tributes a continual loss to the H-function in any time direction. This result is 
independent of the initial conditions. Since 

fisr N K( = 0 only if L12.rr( 1/2) = 0 everywhere 

the Boltzmann function is a true measure out of equilibrium (i.e. Vt). H ( t )  then 
satisfies the evolution condition 

fi( t )  = f i i , l N , (  ?) G( f )  

where the sign of G ( t )  is dependent on the dynamics (the correlated part of the 
probability distribution). The leading term in (12) becomes a source term for the 
measure -fl lnf, . 

From (10) and (12) the following correspondence can be noted: 

I-?( t )  f, 7r( 1/2), T(12) 

fi( t ) -  T( 1/2), r (  12), T (  1/2/3) 

.rr(1/23), d2 /13 ) ,  4 3 / 1 2 ]  

T (  123). 

This leads to the conjecture that a : H ( t )  depends only on the correlation patterns for 
orders 6 n + 1, which trivially follows using induction and noting that for a pattern 
of order 1, d'), +(') depends on patterns of order S 1 + 1 as is evident from Balescu's 
(1975a) hierarchy. Successive time derivatives of H( t )  also yield measure functions 
on the phase space corresponding to more complicated correlation patterns. It is 
apparent that the requirement of the mapping (9) is necessary and sufficient to ensure 
a:H depends only on the action of LI2 on the correlation patterns. This neatly fits in 
with Balescu's (197%) theory representing classical dynamics purely as a dynamics of 
correlations. Any other measure function produces new operators in phase space 
which do not appear in the original Liouville equation and therefore do not model 
the interaction process. 

Since there exist only two measures on the phase space (differing in sign), then 
the mapping onto the names 'information' and 'entropy' is uniquely defined by 

fl  lnf,-information, ( & N K ( t ) )  

- f l  InfI-entroPY, (&"RCE(t))  

up to an arbitrary positive constant. 
This letter has shown that although the function k x l n x  does not appear in any 

equation of motion explicitly, it appears as an embedded property of the Liouville 
equation in a natural and meaningful way. This answers some of the points raised by 
Andrew (1984). 

Contentious points like time asymmetry and a link between entropy and time have 
not been discussed primarily because it is believed that these results have actually 
broken that link. Indeed, in the theory presented here, t is merely an independent 
parameter and has no future or past interpretation built into the equations. Curiously, 
also, these results do not contradict any theorems concerning the existence of 
Lyapounov functions on the phase space simply because fl  lnf, is a unique measure 
of information for the exact dynamics but is not Lyapounov (e.g. the PoincarC-Misra 
theorem, Prigogine 1979b). It is emphasised that the only assumptions made here 
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concern the existence of Liouville’s equation, property (3) and the usual boundary 
conditions over phase space assumed by other authors. Further, no appeal to coarse 
graining is required in the theory with the unique existence of the Boltzmann function 
being solely a property of Liouville’s exact equation for the microscopic flow. In 
particular, this letter has widened the discussion to any interaction potential, satisfying 
condition (3), which now includes magnetic phenomena. 

The results here strongly suggest that the Liouville equation itself defines, implicitly, 
the sort of entropy function that should be used. Thus the concepts of ‘information’ 
and ‘entropy’ should, in principle, be deducible from the governing (Liouville) equation. 
The constancy of (1) for an arbitrary function F, can only be interpreted as F = f D In D 
because of the results achieved earlier. 
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